Skip to main content

3.AVL树

3.3 AVL 树

概述

历史

AVL 树是一种自平衡二叉搜索树,由托尔·哈斯特罗姆在 1960 年提出并在 1962 年发表。它的名字来源于发明者的名字:Adelson-Velsky 和 Landis,他们是苏联数学家,于 1962 年发表了一篇论文,详细介绍了 AVL 树的概念和性质。

在二叉搜索树中,如果插入的元素按照特定的顺序排列,可能会导致树变得非常不平衡,从而降低搜索、插入和删除的效率。为了解决这个问题,AVL 树通过在每个节点中维护一个平衡因子来确保树的平衡。平衡因子是左子树的高度减去右子树的高度。如果平衡因子的绝对值大于等于 2,则通过旋转操作来重新平衡树。

AVL 树是用于存储有序数据的一种重要数据结构,它是二叉搜索树的一种改进和扩展。它不仅能够提高搜索、插入和删除操作的效率,而且还能够确保树的深度始终保持在 O(log n) 的水平。随着计算机技术的不断发展,AVL 树已经成为了许多高效算法和系统中必不可少的一种基础数据结构。

前面介绍过,如果一棵二叉搜索树长的不平衡,那么查询的效率会受到影响,如下图

image-20230313090500760

通过旋转可以让树重新变得平衡,并且不会改变二叉搜索树的性质(即左边仍然小,右边仍然大)

image-20230313090817485

如何判断失衡?

如果一个节点的左右孩子,高度差超过 1,则此节点失衡,才需要旋转

处理高度

如何得到节点高度?一种方式之前做过的一道题目:E05. 求二叉树的最大深度(高度),但由于求高度是一个非常频繁的操作,因此将高度作为节点的一个属性,将来新增或删除时及时更新,默认为 1(按力扣说法)

static class AVLNode {
int height = 1;
int key;
Object value;
AVLNode left;
AVLNode right;
// ...
}

求高度代码

这里加入了 height 函数方便求节点为 null 时的高度

private int height(AVLNode node) {
return node == null ? 0 : node.height;
}

更新高度代码

将来新增、删除、旋转时,高度都可能发生变化,需要更新。下面是更新高度的代码

private void updateHeight(AVLNode node) {
node.height = Integer.max(height(node.left), height(node.right)) + 1;
}

何时触发失衡判断?

定义平衡因子(balance factor)如下

平衡因子 = 左子树高度 - 右子树高度

当平衡因子

  • bf = 0,1,-1 时,表示左右平衡
  • bf > 1 时,表示左边太高
  • bf < -1 时,表示右边太高

对应代码

private int bf(AVLNode node) {
return height(node.left) - height(node.right);
}

当插入新节点,或删除节点时,引起高度变化时,例如

image-20230310153645397

目前此树平衡,当再插入一个 4 时,节点们的高度都产生了相应的变化,8 节点失衡了

image-20230310153803661

在比如说,下面这棵树一开始也是平衡的

image-20230310154155728

当删除节点 8 时,节点们的高度都产生了相应的变化,6 节点失衡了

image-20230310154232729

失衡的四种情况

LL

image-20230310154459709

  • 失衡节点(图中 8 红色)的 bf > 1,即左边更高
  • 失衡节点的左孩子(图中 6)的 bf >= 0 即左孩子这边也是左边更高或等高

LR

image-20230310154858754

  • 失衡节点(图中 8)的 bf > 1,即左边更高
  • 失衡节点的左孩子(图中 6 红色)的 bf < 0 即左孩子这边是右边更高

对称的还有两种情况

RL

image-20230310155048187

  • 失衡节点(图中 3)的 bf <-1,即右边更高
  • 失衡节点的右孩子(图中 6 红色)的 bf > 0,即右孩子这边左边更高

RR

image-20230310155347349

  • 失衡节点(图中 3)的 bf <-1,即右边更高
  • 失衡节点的右孩子(图中 6 红色)的 bf <= 0,即右孩子这边右边更高或等高

实现

解决失衡

失衡可以通过树的旋转解决。什么是树的旋转呢?它是在不干扰元素顺序的情况下更改结构,通常用来让树的高度变得平衡。

观察下面一棵二叉搜索树,可以看到,旋转后,并未改变树的左小右大特性,但根、父、孩子节点都发生了变化

      4                                   2
/ \ 4 right / \
2 5 --------------------> 1 4
/ \ <-------------------- / \
1 3 2 left 3 5

右旋

旋转前

image-20230310162158692

  • 红色节点,旧根(失衡节点)
  • 黄色节点,旧根的左孩子,将来作为新根,旧根是它右孩子
  • 绿色节点,新根的右孩子,将来要换爹作为旧根的左孩子

旋转后

image-20230310162442932

代码

private AVLNode rightRotate(AVLNode red) {
AVLNode yellow = red.left;
AVLNode green = yellow.right;
yellow.right = red;
red.left = green;
return yellow;
}

左旋

旋转前

image-20230310162945078

  • 红色节点,旧根(失衡节点)
  • 黄色节点,旧根的右孩子,将来作为新根,旧根是它左孩子
  • 绿色节点,新根的左孩子,将来要换爹作为旧根的右孩子

旋转后

image-20230310163019508

代码

private AVLNode leftRotate(AVLNode red) {
AVLNode yellow = red.right;
AVLNode green = yellow.left;
yellow.left = red;
red.right = green;
return yellow;
}

左右旋

指先左旋左子树,再右旋根节点(失衡),这时一次旋转并不能解决失衡

image-20230310171424362

左子树旋转后

image-20230310171636904

根右旋前

image-20230310171821578

根右旋后

image-20230310171903417

代码

private AVLNode leftRightRotate(AVLNode root) {
root.left = leftRotate(root.left);
return rightRotate(root);
}

右左旋

指先右旋右子树,再左旋根节点(失衡)

image-20230310172212302

右子树右旋后

image-20230310172234154

根左旋前

image-20230310172303012

根左旋后

image-20230310172317379

代码

private AVLNode rightLeftRotate(AVLNode root) {
root.right = rightRotate(root.right);
return leftRotate(root);
}

判断及调整平衡代码

private AVLNode balance(AVLNode node) {
if (node == null) {
return null;
}
int bf = bf(node);
if (bf > 1 && bf(node.left) >= 0) {
return rightRotate(node);
} else if (bf > 1 && bf(node.left) < 0) {
return rightLeftRotate(node);
} else if (bf < -1 && bf(node.right) > 0) {
return leftRightRotate(node);
} else if (bf < -1 && bf(node.right) <= 0) {
return rightRotate(node);
}
return node;
}

以上四种旋转代码里,都需要更新高度,需要更新的节点是红色、黄色,而绿色节点高度不变

新增

public void put(int key, Object value) {
root = doPut(root, key, value);
}

private AVLNode doPut(AVLNode node, int key, Object value) {
if (node == null) {
return new AVLNode(key, value);
}
if (key == node.key) {
node.value = value;
return node;
}
if (key < node.key) {
node.left = doPut(node.left, key, value);
} else {
node.right = doPut(node.right, key, value);
}
updateHeight(node);
return balance(node);
}

删除

public void remove(int key) {
root = doRemove(root, key);
}

private AVLNode doRemove(AVLNode node, int key) {
if (node == null) {
return null;
}
if (key < node.key) {
node.left = doRemove(node.left, key);
} else if (node.key < key) {
node.right = doRemove(node.right, key);
} else {
if (node.left == null) {
node = node.right;
} else if (node.right == null) {
node = node.left;
} else {
AVLNode s = node.right;
while (s.left != null) {
s = s.left;
}
s.right = doRemove(node.right, s.key);
s.left = node.left;
node = s;
}
}
if (node == null) {
return null;
}
updateHeight(node);
return balance(node);
}

完整代码备份

public class AVLTree {
static class AVLNode {
int height = 1;
int key;
Object value;
AVLNode left;
AVLNode right;

public AVLNode(int key) {
this.key = key;
}

public AVLNode(int key, Object value) {
this.key = key;
this.value = value;
}

public AVLNode(int key, Object value, AVLNode left, AVLNode right) {
this.key = key;
this.value = value;
this.left = left;
this.right = right;
}
}

AVLNode root;

private AVLNode leftRotate(AVLNode p) {
AVLNode r = p.right;
AVLNode b = r.left;
r.left = p;
p.right = b;
updateHeight(p);
updateHeight(r);
return r;
}

private void updateHeight(AVLNode node) {
node.height = Integer.max(height(node.left), height(node.right)) + 1;
}

private AVLNode rightRotate(AVLNode r) {
AVLNode a = r.left;
AVLNode b = a.right;
a.right = r;
r.left = b;
updateHeight(r);
updateHeight(a);
return a;
}

private AVLNode leftRightRotate(AVLNode p) {
AVLNode r = p.left;
p.left = leftRotate(r);
return rightRotate(p);
}

private AVLNode rightLeftRotate(AVLNode p) {
AVLNode r = p.right;
p.right = rightRotate(r);
return leftRotate(p);
}

private int height(AVLNode node) {
return node == null ? 0 : node.height;
}



public void remove(int key) {
root = doRemove(root, key);
}

private AVLNode doRemove(AVLNode node, int key) {
if (node == null) {
return null;
}
if (key < node.key) {
node.left = doRemove(node.left, key);
} else if (node.key < key) {
node.right = doRemove(node.right, key);
} else {
if (node.left == null) {
node = node.right;
} else if (node.right == null) {
node = node.left;
} else {
AVLNode s = node.right;
while (s.left != null) {
s = s.left;
}
s.right = doRemove(node.right, s.key);
s.left = node.left;
node = s;
}
}
if (node == null) {
return null;
}
updateHeight(node);
return balance(node);
}

public void put(int key, Object value) {
root = doPut(root, key, value);
}

private AVLNode doPut(AVLNode node, int key, Object value) {
if (node == null) {
return new AVLNode(key, value);
}
if (key == node.key) {
node.value = value;
return node;
}
if (key < node.key) {
node.left = doPut(node.left, key, value);
} else {
node.right = doPut(node.right, key, value);
}
updateHeight(node);
return balance(node);
}

private int bf(AVLNode node) {
return height(node.left) - height(node.right);
}

private AVLNode balance(AVLNode node) {
if (node == null) {
return null;
}
int bf = bf(node);
if (bf > 1 && bf(node.left) >= 0) {
return rightRotate(node);
} else if (bf > 1 && bf(node.left) < 0) {
return rightLeftRotate(node);
} else if (bf < -1 && bf(node.right) > 0) {
return leftRightRotate(node);
} else if (bf < -1 && bf(node.right) <= 0) {
return rightRotate(node);
}
return node;
}
}

小结

AVL树的优点:

  1. AVL树是一种自平衡树,保证了树的高度平衡,从而保证了树的查询和插入操作的时间复杂度均为O(logn)。
  2. 相比于一般二叉搜索树,AVL树对查询效率的提升更为显著,因为其左右子树高度的差值不会超过1,避免了二叉搜索树退化为链表的情况,使得整棵树的高度更低。
  3. AVL树的删除操作比较简单,只需要像插入一样旋转即可,在旋转过程中树的平衡性可以得到维护。

AVL树的缺点:

  1. AVL树每次插入或删除节点时需要进行旋转操作,这个操作比较耗时,因此在一些应用中不太适用。
  2. 在AVL树进行插入或删除操作时,为保持树的平衡需要不断进行旋转操作,在一些高并发环节和大数据量环境下,这可能会导致多余的写锁导致性能瓶颈。
  3. AVL树的旋转操作相对较多,因此在一些应用中可能会造成较大的空间浪费。